Xie et al. 39

Influence of O₂ on the CF₄ Decomposition by Atmospheric Microwave Plasma

H. D. Xie, B. Sun, X. M. Zhu, and Y. J. Liu College of Environmental Science and Engineering, Dalian Maritime University, China

Abstract— CF_4 decomposition was investigated by atmospheric microwave plasma experimentally. The mechanisms of CF_4 decomposition assisting with O_2 were also investigated by emission spectrum analysis. The results indicated that the destruction and removal efficiency (DRE) of CF_4 increased firstly and then decreased with the increase of O_2 concentration. There was an optimal O_2 concentration (1000ml/m³), the CF_4 DRE was up to 99 % when the microwave power achieved 1000 W for CF_4 2000 ml/m³ with argon as a carrier gas. The results of emission spectrum analysis indicated that the CF_4 decomposition highly depended on the electron collision in plasma, and O radicals was the assistance in the later reaction, to further oxidize CF_i to CO_2 . For achieving the best DRE of CF_4 with O_2 as an additive gas, the most important key factor was to achieve optimum concentration of O_2 in inlet gas. More or less concentration of O_2 was both unsuitable for the CF_4 decomposition.

Keywords—Microwave plasma, CF₄ decomposition, Oxygen, Emission spectrum

I. INTRODUCTION

Perfluorocompounds (PFCs) are widely used in the chamber cleaning of chemical vapor deposition (CVD) and dielectric film etching processes in modern industry [1]. Because of their strong absorption of infrared radiation and long atmospheric lifetimes which cause the global warming effect, the PFCs emitted from industry need to be removed efficiently. CF₄ is one of the most stable PFCs whose decomposition is extremely difficult using traditional abatement technology. At atmospheric pressure, microwave plasma has homogeneous high electron density and therefore appears much more efficiency for the destruction of CF₄[2]. The destruction and removal efficiency of CF₄ was 98 % using microwave power of 1.8 kW at total gas flow rate of 20 L/min, the addition of water to the reactor could promote the DRE of CF₄ [2]. However, the increase of water molar ratio above 3.5 (H₂O/C₂F₆>3.5/1) was found to affect the plasma stability. Therefore, the addition of oxygen to the gas stream was attempted, it was found that the addition of O₂ (C₂F₆/O₂=2/1) improved DRE of all species present in the gas mixture [3]. Hong et al. [4] used microwave plasma to decompose CF₄, 98.23 % of CF₄ contaminants were abated with O₂ addition. Tsai et al. [5] reported that the DRE of CF₄ was only 12.9 % using microwave plasma (CF₄/N₂) with no additives because of the rapid recombination of CF₄. With the addition of O2, CF4 DRE elevated and reached 84.4~89.8 % at inlet O_2/CF_4 ratio = 1~5, respectively, at 0.8 kW [5]. Because O or O atoms could react with CF₄ and its fragments, such as CF2, then removing C atoms by forming CO₂, CO, and COF₂, inhibited the

Corresponding author: B. Sun e-mail address: sunb88@newmail.dlmu.edu.cn

Presented at the 6th International Conference on Applied Electrostatics in November 2008, Accepted; March 13, 2009

recombination of CF₄ [5]. O₂ addition could also enhance the SF₆ decomposition effectively in plasma reactor [6]. O₂ as an additive gas was widely used to enhance PFCs decomposition in plasma process [7-9], all of these studies reported that O₂ as an additive gas could promote the decomposition of PFCs, it was because O₂ could convert to O radical in plasma and cause the oxidation of PFCs to CO₂. However, the decomposition of PFCs in plasma depends on two major mechanisms, including direct electrons dissociation and reactions with O radicals which are generated from O₂ in plasma. The mechanisms of these processes need to be studied. A variety of radicals associated with CF₄ decomposition should be investigated. Emission optical spectroscopy is widely used on diagnosis of radicals in plasma [10-13]. In this study, we present that the microwave argon plasma operated at atmospheric pressure. The DRE of CF₄ with O2 as an additive gas was investigated. The influence of O₂ concentration on the radicals' density in microwave plasma was investigated by the emission optical spectrum analysis. The mechanisms of CF_4 decomposition assisted with O2 were studied.

II. EXPERIMENT

A schematic diagram of the experimental system was shown in Fig.1. The microwave system consisted of a microwave generator (IBF, GEM) with variable power output from 200 to 2000 W, isolator and power monitor. Microwave transported through the wave guide and produced plasma at atmospheric pressure in a quartz tube (inner diameter is 13 mm). Carbontetrafluoride (CF4 > 99.7 %), oxygen ($O_2 > 99$ %) and Argon (Ar > 99.9 %) were controlled by Mass flow controllers (MFC) respectively to achieve the desired concentration of CF₄ and O_2 in argon gas stream. The conditioned gas was introduced into the plasma reactor, and the gas after reaction was neutralized in wet scrubber. The gas mixtures before and after reaction were monitored online

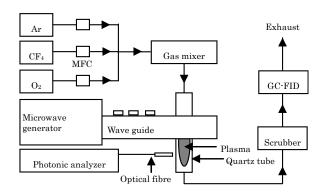


Fig. 1. Schematic diagram of experiment.

by gas chromatography (Shimadzu GC-2010; capillary column, molecular sieve 13X; FID). Radicals in plasma were monitored using the multi-channel photonic analyzer (PMA-11, Hamamatsu). The destruction and removal efficiency (DRE) was calculated:

$$DRE \quad (\%) = \frac{C_{in} - C_{out}}{C_{in}} \times 100$$

Where C_{in} is the initial concentration of CF₄ input reactor and C_{out} is its final concentration after the plasma treatment out of the reactor.

III. RESULTS AND DISCUSSIONS

A. Effect of O_2 concentration on the DRE of CF_4

To find an optimal condition of the O₂ addition, CF₄ DRE for various O2 concentrations have been investigated. The total gas flow rate was 4 L/min containing Ar, CF₄ and O₂. The concentration of CF₄ was 2000 ml/m³. The concentration of O₂ was ranged from 0 to 8000 ml/m³. The results showed that there was an optimal O₂ concentration for maximizing the CF₄ removal efficiency. As shown in Fig. 2. The DRE of CF₄ increased firstly and then decreased with increasing of O2 concentration. The highest DRE of CF4 for 400 W was 83.6 % with O₂ concentration of 1000 ml/m³, and the energy density was 30 kJ/L. Kim et al. [14] investigated the role of the O₂ concentration on CF₄ removal using DBD and remarked that the removal efficiency also reached a maximum (32 %) for an O2 concentration around 500-1000 ml/m³, and the energy density was 45 kJ/L.

At the condition of various microwave power, CF_4 removal test with $1000 \text{ ml/m}^3 O_2$ addition was performed, in contrast to that without O_2 addition, as shown in Fig. 3. The DRE of CF_4 with $1000 \text{ ml/m}^3 O_2$ addition was higher than that without O_2 addition with any given inputting power. The DRE of CF_4 with $1000 \text{ ml/m}^3 O_2$ addition was up to 99 % when the microwave power was up to 1000 W.

The CF_4 decomposition depended on the O_2 concentration and the microwave power. The primary

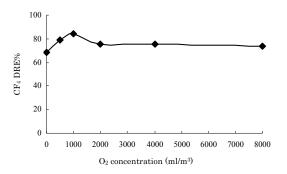


Fig. 2. Effect of O2 concentration on DRE of CF4.

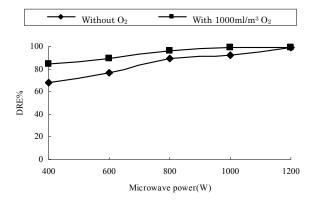


Fig. 3. CF₄ DRE% with 1000 ml/m³ O₂ compared with that without O₂.

step of converting CF_4 to CF_i (including CF_3 , CF_2 , and CF) radicals was electrons collision, as shown in reactions (1-6),

$$e+CF_4 \rightarrow CF_3 + F - \tag{1}$$

$$e + CF_3 \rightarrow CF_2 + F - \tag{2}$$

$$e + CF_4 \rightarrow CF_2 + 2F + e \tag{3}$$

$$e+CF_3 \rightarrow CF+2F+e$$
 (4)

$$e+CF_4 \rightarrow CF+F+F_2+e \tag{5}$$

$$e+CF_2 \rightarrow CF+F + e$$
 (6)

On the other hand, the diatomic oxygen ions or molecules, which are ionized in the microwave plasma with electrons collision, undergo dissociative recombination or attachment to create oxygen radicals [4], as shown in reactions (7-8).

$$O_2 + e \rightarrow O + O^- \tag{7}$$

$$O_2^+ + e \rightarrow O + O \tag{8}$$

Then the resulting CF_i radicals react with O radicals to form CO_2 , COF_2 and CO, as shown in reactions (9-14).

$$CF_3 + O \rightarrow COF_2 + F$$
 (9)

$$CF_2+O \rightarrow CFO+F$$
 (10)

$$CFO+O \rightarrow CO_2 + F \tag{11}$$

$$CF_2 + O_2 \rightarrow COF_2 + O$$
 (12)

$$CF+O \rightarrow CO+F$$
 (13)

$$COF_2 + O \rightarrow CO_2 + F_2 \tag{14}$$

Xie et al. 41

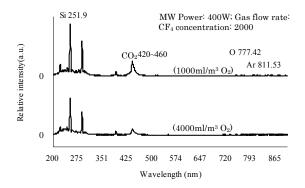


Fig. 4. The emission spectra of Ar/CF₄ plasma with 1000 ml/m 3 O₂ and 4000 ml/m 3 O₂.

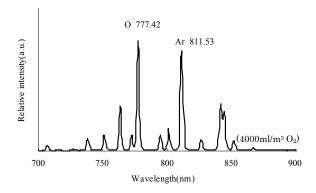


Fig. 5. The zoom of the spectrum (700-900 nm) in Fig. 4.

The O_2 molecules adsorbed the electrons to excite and ionize as reactions (7-8), while the CF_4 conversion highly depended on electrons collision as reactions (1-6) at the same time. For inputting given microwave power 400 W, more than 1000 ml/m 3 O_2 concentration meant less electrons was obtained by CF_4 molecule and less CF_i radicals formed as reactions (1-6). In addition, extreme higher inlet O_2 concentration would make for instability of plasma. So it leaded to lower DRE of CF_4 . For these reasons, optimum O_2 concentration was essential for the best destruction and remove efficient of CF_4 , lower and higher concentration of O_2 were both unsuitable to the decomposition of CF_4 .

B. Emission spectroscopy analysis

Emission spectra of Ar/CF₄ plasma with 1000 ml/m³ and 4000 ml/m³ O₂ were shown in Fig. 4. As the O and Ar peaks in Fig. 4 were not visible, a zoom of this region of the spectrum was shown in Fig. 5. The peak with the wavelength at 811.53 nm indicated atomic argon, Ar^{*}, and the peak with the wavelength at 777.42 nm indicated atomic oxygen, O^{*}. The peaks of CO₂ appeared in the region of 421-461 nm and the peak of Si appeared at near 250 nm when CF₄ used. As Si peak was not appeared without CF₄ adding, the Si peak appeared due to etching of an inner wall quartz tube by F, which was generated by CF₄ decomposition, so the density of Si can denote the density of F. Similar results have been described by T. Kuroki et al. [1], for the optical emission spectrum

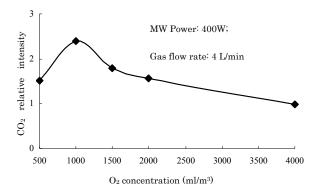


Fig. 6. Effect of O₂ concentration on the CO₂ intensity.

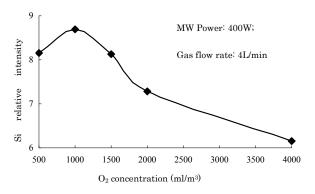


Fig. 7. Effect of O₂ concentration on the Si intensity

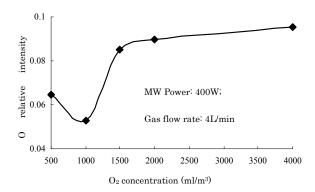


Fig. 8. Effect of O₂ concentration on the O radicals intensity

analysis, with CF and O, they also observed the peaks of O, and Si.

The relative intensity of CO_2 , Si, and O with the increase of O_2 concentration was shown in Fig. 6, Fig. 7 and Fig. 8, respectively.

The CO_2 and Si had the maximum intensity and the O radicals had the minimum intensity with 1000 ml/m³ O_2 . It is might be the following reasons: When the highest DRE of CF_4 was achieved with 1000 ml/L O_2 addition, the most of CF_4 was decomposed. The more CF_4 decomposed the more CO_2 and F generated. On the other hand, the O radicals combined with C to convert to CO_2 , the more CF_4 decomposed and CO_2 generated, the more O radicals consumed. So in the reaction (15):

$$CF_i + O \rightarrow CO_2 + F$$
 (15)

CO₂ and F as resultant had the highest intensity and O radicals as reactant had the lowest intensity when the highest DRE of CF₄ achieved. When the O₂ concentration was more than 1000 ml/m³, the DRE of CF₄ was decreased, the density of CO₂ and Si was also decreased. The density of O radicals was increased with the increase of O₂ concentration. It is might be the following reasons: O2 converted to O radicals with electron collision in plasma, resulted in no enough electrons for the reactions (1-6). If the first step reactions (1-6) had not occurred availability, there was not enough CF_i produced, so there was no CO₂ and F produced in later reactions (9-14). The increase of O radicals is because that the O radicals were more and more generated as reactions (7-8) with the increase of O_2 concentration, meanwhile there was not enough CF_i to react with O radicals, so the O radicals accumulated to more and more high density. The results indicated that CF₄ decomposition highly depended on the electron collision as described in reactions (1-6) in plasma, O radicals was the assistance in later reaction, to further oxidize CF_i to CO₂. In the processing of O radicals formation, O2 absorbed much of electrons, which was adverse to CF₄ convert to CF_i by electron collision. For achieving the best DRE of CF₄ with O₂ as an additive gas, the most important key factor was to have an optimum concentration of O₂ in gas stream. More or less O₂ adding was both unsuitable to CF₄ decomposition.

V. CONCLUSION

The atmospheric microwave plasma successfully applied to CF₄ decomposition with O₂ as an additive gas. The influence of O₂ on the CF₄ decomposition was investigated by diagnosis of radicals in plasma. As results, the DRE of CF₄ increased firstly and then decreased with increase of O₂ concentration. The highest DRE of CF₄ was 83.6 % with O₂ concentration of 1000 ml/m³ using the 400W microwave power. The DRE was up to 99% when the microwave power over 1000 W. CF₄ decomposition highly depended on the electron collision. O radicals were the assistance in later reaction, for CF_i to be oxidized into CO₂. During the formation of O radicals, electron was captured by O_2 , which decreased collision probability between CF₄ molecule and electron. There might be a competition between the increments of O radicals to react with CF_i fragments and the decrements of electron for collision with CF₄ molecule. For decomposing CF₄ in microwave plasma with O₂ as an additive gas, the most important key was to control the concentration of O_2 in gas stream. The optimum concentration of O₂ was essential to achieve the highest DRE of CF₄.

This work was supported by the National Nature Science Foundation of China (NSFC-20577004).

REFERENCES

- T. Kuroki, J. Mine, S. Odahara, M. Okubo, T. Yamamoto, and N. Saeki, "CF₄ Decomposition of Flue Gas From Semiconductor Process Using Inductively Coupled Plasma," *IEEE Transactions on industry applications*, vol. 41, pp. 221-228, 2005.
- [2] M. T. Radoiu, "Studies of 2.45GHz Microwave Induced Plasma Abatement of CF₄," *Environmental Science and Technology*, vol. 37, pp. 3985-3988, 2003.
- [3] M. T. Radoiu, "Studies on atmospheric plasma abatement of PFCs," *Radiation Physics and Chemistry*, vol. 69, pp. 113-120, 2004.
- [4] Y. C. Hong, H. S. Kim, and H. S. Uhm, "Reduction of perfluorocompound emissions by microwave plasma-torch," Thin Solid Films, vol. 435, pp. 329-334, 2003.
- [5] C. H. Tsai and Z. Z. Kuo, "Effects of additives on the selectivity of byproducts and dry removal of fluorine for abating tetrafluoromethane in a discharge reactor," *Journal of Hazardous Materials*, vol. 161, pp. 1478-1483, 2009.
- [6] C. H. Tsai and J. M. Shao, "Formation of fluorine for abating sulfur hexafluoride in an atmospheric - pressure plasma environment," *Journal of Hazardous Materials*, vol. 157, pp. 201-206, 2008.
- [7] B. A. Wofford, M. W. Jackson, C. Hartz and J. W. Bevan, "Surface Wave Plasma Abatement of CHF₃ and CF₄ containing Semiconductor Process Emissions," *Environmental Science and Technology*, vol. 33, pp. 1892-1897, 1999.
- [8] C. L. Hartz, J. W. Bevan, M. W. Jackson, and B. A. Wofford, "Innovative Surface Wave Plasma Reactor Technique for PFC Abatement," *Environmental Science and Technology*, vol. 32, pp. 682-687, 1998.
- [9] S. J. Yu and M. B. Chang, "Oxidative Conversion of PFC via Plasma Processing with Dielectric Barrier Discharges," *Plasma Chemistry and Plasma Processing*, vol. 21, pp. 311-327, 2001.
- [10] P. Pohl, I. J. Zapata, M. A. Amberger, N. H. Bings, and J. A. C. Broekaert, "Characterization of a microwave microstrip helium plasma with gas-phase sample introduction for the optical emission spectrometric determination of bromine, chlorine, sulfur and carbon using a miniaturized optical fiber spectrometer," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 63, pp. 415-421, 2008.
- [11] P. Jamroz and W. Zyrnicki, "A spectroscopic study into the decomposition process of titanium isopropoxide in the nitrogen– hydrogen 100 kHz low-pressure plasma," *Vacuum*, vol. 82, pp. 651-656, 2008.
- [12] K. Jankowski, "Some spatial effects observed in the axially viewed filament argon microwave induced plasma with solution nebulization," *Spectrochimica Acta Part B: Atomic Spectroscopy*, vol. 57, pp. 853-863, 2002.
- [13] A. Piotrowski, "Non-LTE argon plasma composition at atmospheric pressure," *Czechoslovak journal of physics*, vol. 53, pp. 273-282, 2003.
- [14] Y. Kim, K-T. Kim, M. S. Cha, Y-H. Song, and S. J. Kim, "CF4 decomposition using streamer-and glow-mode in dielectric barrier discharges," *IEEE Transactions on Plasma Science*, vol. 33, 1041-1046, 2005.