Regular Paper

Low-concentration NO_x removal using plasma-chemical hybrid process combined with limestone-gypsum desulfurization

Takeru Itagaki¹, Junta Inoue¹, Tomoyuki Kuroki^{1,}*, Haruhiko Yamasaki¹, Hashira Yamamoto², Masanori Hattori³, Masaaki Okubo¹

¹ Department of Mechanical Engineering, Osaka Metropolitan University, Japan ² Nihon Yamamura Glass Co., Ltd., Japan ³ Chubu Electric Power Co., Inc., Japan

* Corresponding author: kuroki@omu.ac.jp (Tomoyuki Kuroki)

Received: 30 December 2024 Revised: 14 February 2025 Accepted: 20 February 2025 Published online: 26 February 2025

Abstract

Nitrogen oxides (NO_x) and sulfur oxides (SO_x) emitted from thermal power plants are hazardous pollutants causing acid rain and air pollution. To meet the respective emission regulations, NO_x is treated using the selective catalytic reduction (SCR) method, while SO_x is treated using the lime gypsum method before being discharged via a flue-gas stack. Recently, some local governments and companies have signed environmental protection agreements that impose stricter limits than national emission regulations. Moreover, existing technologies, such as low-NO_x burners and SCR, exhibit limitations in achieving further NO_x reduction. Therefore, further pollutant reduction measures are required, particularly NO_x treatment methods that can be retrofitted into existing flue gas treatment systems in thermal power plants. A plasma-chemical hybrid process (PCHP) offers a promising solution for simultaneous removal of NO_x and SO_x and can be retrofitted. In this study, laboratory-scale experiments were conducted to evaluate the simultaneous removal of low-concentration NO_x and highconcentration SO_x using ozone (O₃) injection and absorption towers, simulating the integration of PCHP into the absorption tower of flue gas treatment equipment in a coal-fired power plant. The results show that PCHP enables simultaneous removal of low-concentration NO_x and high-concentration SO₂, although water spray impacts NO oxidation.

Keywords: Low-concentration NO_x, plasma-chemical hybrid process, SO_x, limestone-gypsum desulfurization.

1. Introduction

In recent years, the demand to reduce carbon dioxide (CO₂) emissions, a major contributor to global warming, has led to the consideration of large-scale renewable energy integration into power generation [1–5]. However, the power output from renewable energy sources fluctuates depending on the time and weather conditions, resulting in significant unstable electricity supply. Therefore, it is necessary to stabilize the power supply with thermal power generation, which can readily adjust electricity output [4, 5]. Nitrogen oxides (NO_x) and sulfur oxides (SO_x) emitted from thermal power plants are hazardous pollutants causing acid rain and air pollution. Their emissions are regulated under air pollution control laws [6]. For these emissions, NO_x is treated using the selective catalytic reduction (SCR) method [6–11], and SO_x is treated using the lime gypsum method [12–14] to meet the respective emission regulations. Recently, some local governments and companies have signed environmental protection agreements that impose stricter limits than the national emission regulations, requiring further pollutants reduction. However, existing technologies, such as low-NO_x burners and SCR, have limitations in achieving further NO_x reduction. Additionally, the anticipated large-scale introduction of renewable energy will require thermal power plants to readily adjust the electricity output, resulting in reduced NO_x emissions. Therefore, there is a need for NO_x treatment methods that can be retrofitted into the existing flue gas treatment facilities in thermal power plants.

Fig. 1. Flue gas treatment flow in thermal power plant after the introduction of PCHP.

Many energy-saving and highly efficient NO_x treatment methods using atmospheric pressure and lowtemperature plasma have been reported [6, 15-18]. Previous studies have shown that the plasma chemical hybrid process (PCHP) technology, which combines a plasma method for oxidizing nitric oxide (NO) in boiler flue gas to nitrogen dioxide (NO_2) a subsequent reaction process for reducing and removing NO_2 produced through oxidation using sodium sulfite (Na_2SO_3) solution, can achieve highly efficient treatment [19–18]. If NO_2 can be removed using calcium sulfite (CaSO₃), which is produced by the reaction between a calcium carbonate ($CaCO_3$) slurry and SO_x , it could be used in the flue gas treatment systems of coal-fired power plants [19–24]. Fig. 1 shows the flue gas flow in a coal-fired power plant after introducing PCHP. Typically, NO_x treatment is first performed on flue gas from a boiler in the denitration equipment at a coal-fired power plant. The gas is then cooled in a heat exchanger, dust is removed in a dust removal tower, passed through a mist removal system, and then subjected to SO_x treatment in an absorption tower, where a CaCO₃ slurry is used to remove not only SO_x but also NO_x, and simultaneous removal of NO_x and SO_x is achieved. PCHP has been applied to glass melting furnaces, efficiently treating NO_x and SO_x [23–25]. The reaction of O₃ with SO₂ (reaction rate constant $k = 1.92 \times 10^{-22}$ cm³ molecule⁻¹s⁻¹, 25 °C) is much slower than its reaction with NO (k = 1.7×10^{-14} cm³ molecule⁻¹s⁻¹, 25 °C). Consequently, O₃ selectively oxidizes NO [25–27], with no effect of SO_x on NO oxidation observed for glass melting furnace exhaust gases containing equal amounts of NO_x and SO_x [23, 24]. However, as shown in Fig. 1, when PCHP is introduced, high concentrations of SO_x are present relative to low concentrations of NO_x , SO_2 may have inhibited NO oxidation, resulting in inadequate NO_x treatment. In addition, it is necessary to investigate the performance of O_3 oxidation by water spraying, because O_3 injection involves spraying with a two-fluid nozzle to diffuse O_3 into the flue gas. To evaluate the NO oxidation performance in the presence of low-concentrations of NO_x and high-concentrations of SO_2 , NO oxidation experiments were conducted using an O₃ injection tower. Furthermore, we evaluated the simultaneous removal of NO_x and SO_2 by combining O_3 injection under water spray conditions in the O_3 injection tower and CaCO₃ slurry injection in the absorption tower, assuming that the PCHP was introduced into the dust removal and absorption towers in the flue gas treatment flow of a coal-fired power plant. In previous simultaneous NO_x and SO_x removal experiments using PCHP, O_3 was injected at the same concentration as NO, and sufficient NO oxidation and NO_x treatment were achieved [23, 24]. However, when PCHP is introduced at low NO_x concentrations, the O_3 concentration is also low, making it susceptible to the inhibition of oxidation by the water spray. Therefore, we evaluated the appropriate O_3 concentration for lowconcentration NO_x treatment to improve removal efficiency.

2. Chemical reactions in PHCP

When PCHP is integrated into flue gas treatment in thermal power plants, NO in the flue gas is oxidized by O_3 to form NO₂ during the plasma process. During the chemical process, SO₂ and NO₂ are absorbed by the CaCO₃ slurry, resulting in desulfurization and denitrification. When CO₂ is included in the simulated flue gas, the

reaction of the CaCO₃ slurry with CO₂ increases SO_3^{2-} owing to the absorption of SO₂. The main chemical reactions by PCHP are shown in reactions (1)–(10) [19–32].

 $NO + O_3 \rightarrow NO_2 + O_2 \tag{1}$

$$NO_2 + O_3 \rightarrow NO_3 + O_2$$
 (2)

$$SO_2 + O_3 \rightarrow SO_3 + O_2$$
 (3)

$$H_2O + SO_2 \rightarrow H_2SO_3 \tag{4}$$

$$2NO_2 + 4SO_3^{2-} \rightarrow N_2 + 4SO_4^{2-}$$
(5)

$$O_2 + 2SO_3^{2-} \to 2SO_4^{2-}$$
 (6)

$$CaCO_3 + SO_2 \rightarrow CaSO_3 + CO_2 \tag{7}$$

$$CaCO_3 + CO_2 + H_2O \rightarrow Ca^{2+} + 2HCO_3^{-}$$
(8)

$$SO_2 + HCO_3^- \rightarrow HSO_3^- + CO_2$$
 (9)

$$\mathrm{HSO}_{3^{-}} \to \mathrm{H}^{+} + \mathrm{SO}_{3}^{2^{-}} \tag{10}$$

3. Experimental

3.1 O₃ injection and absorption towers

Fig. 2 shows a schematic diagram of the O_3 injection and absorption towers. The O_3 injection tower was a cylindrical vessel made of SUS304 with an inner diameter of 56 mm and height of 980 mm. The z-axis was set in the vertical direction (upward: +) of the O_3 injection tower and z = 0 mm was set at the inlet of the simulated flue gas.

Fig. 2. Schematic diagram of the O₃ injection and absorption towers.

A 420 mm long heater (Eikou Electric Co., Ltd.: Voltage 100 V, Power 500 W) was installed on the upper wall of the O₃ injection tower, and a 400 mm long heater (Eikou Electric Co., Ltd.: Voltage 100 V, Power 450 W) was installed in the lower section. In the previous study [33], the effect of gas temperature on NO oxidation by O_3 was not observed under 100 °C. Therefore, the O_3 injection tower was not heated, resulting in the gas temperature of approximately 20. At z = 100 mm, the tip of the O₃ injection tube was placed at the center of the reactor, and O₃ was injected in a counterflow direction to the simulated flue gas flow. A Poppett check valve (SS-6C-25, Swagelok Company; cracking pressure of 0.18 MPa) was installed at the top to prevent 200, and 600 mm. The absorption tower has an inner diameter of 52 mm and a total length of 916 mm. The length from the inlet to the outlet of the absorption tower was 600 mm, which was the same as that of the O_3 injection tower. In an actual plant, a $CaCO_3$ slurry is sprayed using a spray nozzle; however, it is difficult to use a spray nozzle in laboratory-scale experiments due to the clogging of spray holes. Therefore, CaCO₃ slurry was sprayed from the top of the absorption tower using a 1/8-inch SUS tube and a rectification cap. In addition, Glass Raschig rings (FC-4, Asahi Glassplant Inc.: borosilicate glass, φ 4 mm × 5 mm) were used as packing material. The porosity of the packed bed is approximately 50%. The sprayed $CaCO_3$ slurry collided with the packed bed and diffuse the CaCO₃ slurry into the packed bed, thereby promoting gas-liquid contact.

3.2 Experimental setup overview

A schematic of the experimental apparatus used in this study is shown in Fig. 3. The experimental apparatus, consisted of a simulated flue gas flow, O_3 flow, water spray flow, and lime slurry flow, and treats NO_x and SO_2 in the simulated flue gas using the combination of O_3 injection and absorption towers. A dust removal tower was not prepared in this study because the simulated exhaust did not contain dust. However, Some of NO_x and SO_2 is absorbed by water spray in the dust removal tower in the actual apparatus. Mass flow controllers (SFC280E, Hitachi Metals, Ltd.) were used to adjust the flow rate and concentration of N_2 -based NO (NO = 200 ppm), N₂-based SO₂ (SO₂ = 2000 ppm), synthetic air (O₂ = 21%, N₂ = 79%), and a CO₂ cylinder (99.5%). The mixed gas was introduced into the lower part of the O₃ injection tower, where the flue gas flowed

Fig. 3. Schematic diagram of the experimental setup.

upward from the bottom to the top and reacted with the O_3 in the cooling water spray area. O_3 was generated using a surface discharge-type ozonizer (OZS-OP60-12V, Masuda Research Inc.). The concentration of the O₃ generated was measured using an ozone monitor (EG-610, Ebara Jitsugyo Co., Ltd.), and the O₃ flow rate was adjusted using a flow meter before injection into the O₃ injection tower. Water in a stainless steel pressurized tank (TM18SRV, UNICONTROLS Co., Ltd.: 18 L) up to 0.45 MPa using an N₂ cylinder, and pumped to the top of the O₃ injection tower and sprayed from a one-fluid nozzle (UNIJET TIP-130783 TN SS0.11, Spraying Systems Co., Japan: full-cone type, spray angle 20°). The spray flow rate was set to 10 mL min⁻¹ (standard temperature and pressure) using a flow meter (RK1250 SERIES, KOFLOC Corp.). The sprayed water that did not evaporate was discharged from the bottom of the O_3 injection tower through the valve. Following this treatment, the flue gas was discharged from the top of the O₃ injection tower and introduced at the top of the absorption tower. In the absorption tower, the flue gas flows downward from the top to the bottom and reacts with the CaCO₃ slurry. The CaCO₃ slurry was stirred using a magnetic stirrer (CT-3A, AS ONE Corporation), pumped using a tube pump (ST-1N, ELEPON E.C.A.P. Corporation: 72 mL min⁻¹), and sprayed from the top of the absorption tower. The CaCO3 slurry absorbed SO2 and NO2 from the flue gas and was stored at the bottom of the absorption tower. Consequently, the flue gas was discharged from the bottom of the absorption tower. The concentrations of NO, NO_x, O₂, SO₂, and N₂O were then measured using a gas analyzer (PG-350, chemiluminescence analyzer for NO and NO_x , paramagnetic analyzer for O_2 , non-dispersive infrared absorption analyzer for SO₂, Horiba, Ltd.) and an N₂O analyzer (VIA-510, non-dispersive infrared absorption, Horiba, Ltd.) before the exhaust.

3.3 NO oxidation by O₃ injection

To evaluate the NO oxidation performance in the presence of low concentrations of NO and high concentrations of SO₂, NO oxidation experiments were conducted using an O₃ injection tower. The experiments were conducted in two patterns: with and without water spraying. Without water spraying, the simulated flue gas was used for the following conditions: an initial NO concentration = 15 ppm, an initial SO₂ concentration = 150, 300, 450, and 690 ppm (SO₂/NO = 10, 20, 30, and 46), O₂ concentration = 6%, a simulated flue gas flow rate flowing in O₃ injection tower $Q_1 = 10 \text{ Lmin}^{-1}$, O₂ flow rate = 0.20 L min⁻¹, O₃ concentration = 15 ppm after mixing. The O₃ injection into the O₃ injection tower began 5 min after the start of the experiment, and the experiment continued for a total of 10 min. The NO, NO_x, SO₂, and N₂O concentration = 6%, $Q_1 = 10 \text{ Lmin}^{-1}$, and O₂ flow rate = 0.20 L min⁻¹, O₃ concentration = 6%, $Q_1 = 10 \text{ Lmin}^{-1}$, and O₂ flow rate = 0.20 L min⁻¹. Water was spraying the simulated flue gas was mixed at an initial NO concentration = 6%, $Q_1 = 10 \text{ Lmin}^{-1}$, and O₂ flow rate = 0.20 L min⁻¹, O₃ concentration = 15 ppm after mixing. The water spray flow rate q_1 was set to 7.0 m L min⁻¹. Water was sprayed into the O₃ injection tower 5 min after the start of the experiment, and the O₃ injection tower 5 min after the start of the experiment, and the O₃ injection began 10 min later. Measurements were conducted for 20 min. The NO, NO_x, SO₂, and N₂O concentration set sprayed into the O₃ injection began 10 min later. Measurements were spray flow rate spray flow concentration set or 7.0 min later. Measurements were conducted for 20 min. The NO, NO_x, SO₂, and N₂O concentration set or 5 min.

3.4 Simultaneous removal of NO_x and SO₂ using CaCO₃ slurry

The simultaneous removal of NO_x and SO₂ was evaluated by combining O₃ injection under water-spray conditions in the O₃ injection tower with CaCO₃ slurry injection in the absorption tower, assuming that the PCHP was installed between the dust removal and absorption towers in a coal-fired power plant. The simulated flue gas was used for the following conditions: the initial NO concentration = 15 ppm, the initial SO₂ concentration = 690 ppm (SO₂/NO = 46), O₂ concentration = 6%, $Q_1 = 10 \text{ L} \text{min}^{-1}$, O₂ flow rate = 0.20 L min⁻¹, O₃ concentration = 1.6 g m⁻³, and O₃ concentration after mixing = 15 ppm. q_1 was set to 7.0 mL/min. The CaCO₃ slurry spray flow rate, q_2 , was set to 36–72 m L min⁻¹, and the CaCO₃ slurry concentrations were 10% and 30%. Experiments were also conducted by varying the residence time in the packed bed of the absorption tower, by varying the simulated flue gas flow rate in the absorption tower $Q_2 = 3$, 5, and 10 L min⁻¹ and packing heights $H_r = 100$, 200, and 250 mm. The equation for residence time T_r (s) is as follows:

$$T_r = \frac{\alpha \pi H_r D_2^2}{4Q_2} \tag{11}$$

where α (-) represents the porosity of the packed bed, D_2 denotes the inner diameter of the absorption tower. Water spraying on the O₃ injection tower was started 5 min after the start of the experiment, and O₃ injection was started 10 min later. In addition, the CaCO₃ slurry was sprayed into the absorption tower 20 min after the start of the experiment. Measurements were conducted for 85 min. The NO, NO_x, SO₂, and N₂O concentrations were measured every 5 min.

For the low-concentration NO treatment, the O₃ concentration after injection was also low, and thus susceptible to oxidation inhibition by the water spray. Therefore, experiments were conducted by varying the O₃ concentration to improve NO_x removal efficiency. Moreover, experiments using simulated flue gas containing 13% CO₂ were conducted because flue gas from a thermal power plant contains approximately 13% CO₂. The initial NO and SO₂ concentrations were 15 ppm and 690 ppm, respectively (SO₂/NO = 46). The O₂ and CO₂ concentration are 6% and 13%, respectively. The simulated flue gas flow rate in the O₃ injection tower was set to 10 L min⁻¹. The O₂ flow rate is 0.20 L min⁻¹, O₃ concentration is 1.6–2.4 g m⁻³ (15–23 ppm after mixing). The water spray flow rate is 7.0 m L min⁻¹, CaCO₃ slurry spray flow rate is 36 m L min⁻¹, and the packing height is 250 mm. Water spraying on the O₃ injection tower was started 5 min after the start of the experiment, and the O₃ injection was started 10 min later. In addition, the spraying of the CaCO₃ slurry into the absorption tower started 20 min after the start of the experiment. Measurements were conducted for 85 min, and NO, NO_x, SO₂, and N₂O concentrations were measured every 5 min.

4. Results and discussion

4.1 NO oxidation by O₃ injection

Fig. 4 shows the NO, NO_x, N₂O, and SO₂ concentrations in the NO oxidation experiment at SO₂/NO = 30. Fig. 4 (a) shows the results of O₃ injection only, and Fig. 4 (b) shows the results of O₃ injection and water spraying. Fig. 4 (a) shows that NO concentration decreased by 13.4 ppm and NO_x concentration decreased by 1.6 ppm before and after O₃ injection, while SO₂ concentration did not change. The O₃ injection was effective for NO oxidation, whereas water spraying was effective for SO₂ removal. Fig. 5 shows the effect of SO₂ concentration on Δ NO/O₃, NO_x removal efficiency, and SO₂ removal efficiency in the NO oxidation experiment. Fig. 5 (a) shows the results of O₃ injection only, and Fig. 5 (b) shows the results of O₃ injection and water spraying. Fig. 5 (b) shows that the initial SO₂ concentration did not affect NO oxidation, even when O₃ injection and water spraying were performed. However, the NO oxidation efficiency was lower than that of O₃ injection alone. This was due to the reaction between water and O₃. Under SO₂/NO = 46, which is the flue gas condition of the actual plant, the NO oxidation efficiency was 70% on average, and SO₂ was removed by about 10% under the influence of sprayed water; the reaction of SO₂ with water produced SO₃²⁻. The NO₂ produced by NO and O₃ is absorbed more rapidly as the SO₃²⁻ concentration increases [34]. The absorption is accelerated; thus, the NO_x removal efficiency is considered to increase with increasing SO₂ concentration [34].

Fig. 4. Gas concentration when the O_3 injection tower was used under the condition of $SO_2/NO = 30$ (a)Without water spray, (b)With water spray.

Fig. 5. Δ NO/O₃ and the removal efficiencies of NO_x and SO₂ when O₃ injection was conducted (a)Without water spray, (b)With water spray.

4.2 Simultaneous removal of NO_x and SO₂ by CaCO₃ slurry

Experiments were conducted on NO oxidation by O_3 injection and the simultaneous removal of NO_x and SO_2 by a CaCO₃ slurry under water-spraying conditions using both O_3 injection and absorption towers. In actual equipment, the CaCO₃ slurry is sprayed using a spray nozzle, whereas at the laboratory scale, the spray nozzle is clogged and cannot be sprayed. Therefore, we evaluated the denitrification performance under conditions in which the packing material was used to promote gas-liquid contact and achieve a desulfurization efficiency close to that of an actual plant. In this experiment, the residence time in the packed bed of the absorption tower varied according to the packing height and flue-gas flow rate in the absorption tower.

Fig. 6. Gas concentrations when the O_3 injection and absorption towers were used under the condition of $SO_2/NO=46$ and $CaCO_3 = 30\%$ for various flue gas flow rates and packing heights, with residence time of: (a) 2.4 s, (b) 4.8 s, (c) 8 s and (d) 16 s.

Fig. 7. NO_x and SO_2 removal efficiencies when the O_3 injection and absorption towers were used.

Fig. 8. Gas concentrations when the O_3 injection and absorption towers were used under the condition of $SO_2/NO=46$, $CaCO_3 = 30\%$, $CO_2 = 13\%$, residence time 20 s and O_3 concentration (a) 1, (b) 1.3 and (c) 1.5.

Fig. 6 shows the NO, NO_x, N₂O, and SO₂ concentrations at SO₂/NO = 46 and CaCO₃ slurry concentration of 10% for residence times of (a) 2.4 s, (b) 4.8 s, (c) 8 s, and (d) 16 s in packed bed of the absorption tower. Water spray, O₃ injection, and CaCO₃ slurry injection were started 5, 10, and 20 min after the start of the experiment. The NO_x and SO₂ concentrations decreased before and after CaCO₃ slurry injection. This is because the absorption of NO₂ was enhanced by the SO₃²⁻ produced by the reaction of SO₂ with the CaCO₃ slurry [34]. Fig. 7 shows the removal efficiencies of SO₂ and NO_x as a function of residence time in the packed bed of the absorption tower. The NO_x and SO₂ removal efficiencies increased with the residence time. At a residence time of 20 s, a SO₂ removal efficiencies increased with increasing CaCO₃ concentrations. This was due to the increase in CaSO₃ produced as the CaCO₃ concentration increased [29]. SO₃²⁻, which is effective for NO_x removal, is formed by the reaction of SO₂ with slurry. In previous studies, SO₃²⁻ was oxidized by O₂ in flue gas when SO₂ was absorbed into water in the presence of SO₂ and O₂. This reaction occurs strongly when the pH of the absorbent is approximately 7 and the sulfite produced is almost zero. Conversely, the highest amount of sulfite is produced when the pH is approximately 4 [32]. In this study, the pH of the CaCO₃ slurry was approximately 7, regardless of the residence time; therefore, reaction (6) took priority over reaction (5),

and NO_x removal was inhibited. For further NO_x removal, it is necessary to decrease the pH of the CaCO₃ slurry and increase the amount of SO₃²⁻ produced. The actual flue gas from a thermal power plant contains approximately 13% CO₂, and the pH of the CaCO₃ slurry is reduced by absorbing CO₂. The Ca(HCO₃)₂ generated by CO₂ absorption has a higher solubility in water than CaCO₃. Therefore, the addition of CO₂ to the simulated flue gas brings the gas conditions closer to those of an actual plant and promotes NO_x and SO_x removal through gas-liquid contact with the slurry. In addition, because NO does not react with CaCO₃ slurry, the NO oxidation efficiency must be increased to improve the NO_x removal efficiency. Fig. 8 shows the NO, NO_x, N₂O, and SO₂ at SO₂/NO = 46, CaCO₃ slurry concentration of 30%, and residence time of 20 s in the absorption tower with (a) O₃/NO = 1, (b) 1.3, and (c) 1.5. Water spraying, O₃ injection, and CaCO₃ slurry injection were initiated at 5, 10, and 20 min after the start of the experiment. The results show that CO₂ is effective in increasing NO_x removal while increasing O₃ concentration is effective in increasing NO oxidation and NO_x removal.

Fig. 9. NO oxidation rate and NO_x and SO_2 removal efficiencies when the O_3 injection and absorption towers were used.

Fig. 9 shows the NO oxidation efficiency and SO₂ and NO_x removal efficiencies versus O₃/NO. The NO_x removal efficiencies were 50, 62, and 75 for O₃/NO = 1, 1.3, and 1.5, respectively. Under the present experimental conditions, the NO oxidation efficiency was 96%, with the highest NO oxidation efficiency observed at O₃/NO ratios greater than 1.3. This was due to the formation of NO₃ by Reaction (2). Although the electric power required to generate O₃ is high, the NO_x removal efficiency can be increased without modifying the equipment, and the system can respond to changes in NO_x emissions owing to changes in the amount of electricity generated by thermal power plants. Therefore, PCHP can be retrofitted to thermal power plant flue-gas treatment facilities to comply with strict NO_x emission regulations.

4. Conclusion

The simulated flue gas containing high-concentration SO_2 and low-concentrations NO was subjected to NO oxidation using an O₃ injection tower and simultaneous removal of NO_x and SO_x using an O₃ injection tower and an absorption tower with CaCO₃ slurry, assuming that PCHP would be introduced into the thermal power plant flue gas treatment. The main results are summarized as follows.

(1) Experiments on NO oxidation by O₃ injection into flue gas containing low-concentration NO and highconcentration SO₂ in an O₃ injection tower showed that O₃ sufficiently oxidized NO without reacting with SO₂. O₃ injection resulted in NO oxidation of approximately 90% without water spraying and approximately 70% with water spraying, regardless of the initial SO₂ concentration. The NO oxidation efficiency with water spray was lower than that without water spray because O₃ was absorbed by water. Without water spray, the NO_x removal efficiency was approximately 10%. This is because some of the injected O₃ reacts with NO₂ at O₃/NO = 1. However, with water spray, the NO_x removal efficiency increased as the SO₂ concentration increased, and some of the SO₂ was absorbed by the water and decreased by approximately 10%, suggesting that SO₃²⁻ corresponding to the decrease was generated, and NO₂ was reduced to N₂.

- (2) The simultaneous removal of NO_x and SO_2 was performed using the O_3 injection and absorption towers together and by varying the residence time in the packed bed of the absorption tower to make the reaction time closer to that of the actual system. A SO₂ removal efficiency of 99% was achieved when the residence time was 20 s, which was the same as that of the actual plant. The NO_x and SO_2 removal efficiencies increased with increasing CaCO₃ concentrations. This was due to an increase in the amount of CaSO₃ produced as the CaCO₃ concentration increased.
- (3) To approximate the gas conditions to those of an actual plant and to accelerate NO_x and SO_x removal by gas-liquid contact with the slurry, experiments were conducted by adding 13% CO₂ to the simulated flue gas and varying the O₃ concentration. As O₃/NO increased from 1 to 1.3, the NO oxidation efficiency increased from 78% to 96%. At O₃/NO = 1.5, the NO oxidation efficiency was 95%, which is almost the same as that at O₃/NO = 1.3. The NO_x removal efficiencies were 50, 62, and 75 for O₃/NO = 1, 1.3, and 1.5, respectively. Under the present experimental conditions, the NO oxidation efficiency was 96%, with the highest NO oxidation efficiency observed at O₃/NO ratios greater than 1.3. Although the power required to generate O₃ is high, the NO_x removal efficiency can be increased without changing the equipment, and it is possible to respond to changes in NO_x emissions due to changes in the amount of electricity generated by thermal power plants. Therefore, PCHP can be retrofitted to thermal power plant flue-gas treatment facilities to comply with strict NO_x emission regulations.

Acknowledgment

The authors acknowledge the cooperation of Mr. Shogo Jozaki, an undergraduate mechanical engineering student at Osaka Prefecture University, for conducting this research.

References

- Zou P., Chen Q., Yu Y., Xia Q., and Kang C., Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 high renewable energy penetration roadmap, *Appl. Energy*, Vol. 185, pp. 56–67, 2017.
- [2] Gómez A., Zubizarreta J., Dopazo C., and Fueyo N., Spanish energy roadmap to 2020: Socioeconomic implications of renewable targets, *Energy*, Vol. 36 (4), pp. 1973–1985, 2011.
- [3] Hassan Q., Viktor P., Al-Musawi T.J, Ali B.M., Algburi S., Alzoubi H.M., Al-Jiboory A.K., Sameen A.Z., Salman H.M., and Jaszczur M., The renewable energy role in the global energy transformations, *Renew. Energy Focus*, Vol. 48, 100545, 2024.
- [4] Agency for Natural Resources and Energy, The 6th Strategic Energy Plan, Available: <u>https://www.enecho.meti.go.jp/category/others/basic_plan/pdf/strategic_energy_plan.pdf</u>, 2021.
- [5] Takao K., Hara S., Kiriyama T., Hashimoto A., Kaneko S., Izumi S., and Sakai S., Analysis on demand and supply operation in electric power system under high renewable penetration using optimal power generation mix model, *Trans. JSME*, Vol. 80 (820), TEP0366, 2014. (in Japanese)
- [6] Sun C., Liu H., Chen W., Chen D., Yu S., Liu A., Dong L., and Feng S., Insights into the Sm/Zr co-doping effects on N₂ selectivity and SO₂ resistance of a MnO_x-TiO₂ catalyst for the NH₃-SCR reaction, *Chem. Eng. J.*, Vol. 347, pp 27–40, 2018.
- [7] Miessner H., Francke K.P., Rudolph R., and Hammer Th., NO_x removal in excess oxygen by plasma-enhanced selective catalytic reduction, *Catal. Today*, Vol. 75(1–4), pp 325–330, 2002.
- [8] Kang M., Park E.D., Kim J.M., and Yie J.E., Manganese oxide catalysts for NO_x reduction with NH₃ at low temperatures, *Appl. Catal. A*, Vol. 327 (2), pp. 261–269, 2007.
- [9] Forzatti P., Present status and perspectives in de-NO_x SCR catalysis, *Appl. Catal. A*, Vol. 222 (1–2), pp 221–236, 2001.
- [10] Zhao S., Peng J., Ge R., Wu S., Zeng K., Huang H., Yang K., and Sun Z., Research progress on selective catalytic reduction (SCR) catalysts for NO_x removal from coal-fired flue gas, *Fuel Process. Technol.*, Vol. 236, 107432, 2022.
- [11] Guan B., Zhan R., Lin H., and Huang Z., Review of state of the art technologies of selective catalytic reduction of NO_x from diesel engine exhaust, *Appl. Therm. Eng.*, Vol. 66 (1–2), pp. 395–414, 2014.
- [12] Shuangchen M., Jin C., Gongda C., Weijing Y., and Sijie Z., Research on desulfurization wastewater evaporation: Present and future perspectives, *Renew. Sustain. Energy Rev.*, Vol. 58, pp. 1143–1151, 2016.
- [13] Lee S., Kim Y., and Hong S., Treatment of industrial wastewater produced by desulfurization process in a coal-fired power plant via FO-MD hybrid process, *Chemosphere*, Vol. 210, pp. 44–51, 2018.

- [14] Aunela-Tapola L., Hatanpää E., Hoffren H., Laitinen T., Larjava K., Rasila P., and Tolvanen M., A study of trace element behaviour in two modern coal-fired power plants: II. Trace element balances in two plants equipped with semi-dry flue gas desulphurization facilities, *Fuel Process. Technol.*, Vol. 55 (1), pp. 13–34, 1998.
- [15] Jolibois J., Takashima K., and Mizuno A., Application of a non-thermal surface plasma discharge in wet condition for gas exhaust treatment: NO_x removal, *J. Electeostat.*, Vol. 70 (3), pp. 300–308, 2012.
- [16] Ighigeanu D., Martin D., Zissulescu E., Macarie R., Oproiu C., Cirstea E., Iovu H., Calinescu I., and Iacob N., SO₂ and NO_x removal by electron beam and electrical discharge induced non-thermal plasmas, *Vacuum*, Vol. 77 (4), pp. 493–500, 2005.
- [17] Ma S., Zhao Y., Yang J., Zhang S., Zhang J., and Zheng C., Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma, *Renew. Sustain. Energy Rev.*, Vol. 67, pp. 791–810, 2017.
- [18] Chae J.O., Non-thermal plasma for diesel exhaust treatment, J. Electrostat., Vol. 57 (3-4), pp. 251-262, 2003.
- [19] Wang Z., Zhou J., Zhu Y., Wen Z., Liu J., and Cen K., Simultaneous removal of NO_x, SO₂ and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results, *Fuel Process. Technol.*, Vol. 88 (8), pp. 817–823, 2007.
- [20] Obradović B.M., Sretenović G.B., and Kuraica M.M., A dual-use of DBD plasma for simultaneous NO_x and SO₂ removal from coal-combustion flue gas, *J. Hazard. Mater.*, Vol. 185 (2–3), pp. 1280–1286, 2011.
- [21] Chen G., Gao J., Gao J., Du Q., Fu X., Yin Y., and Qin Y., Simultaneous removal of SO₂ and NO_x by calcium hydroxide at low temperature: Effect of SO₂ absorption on NO₂ removal, *Ind. Eng. Chem. Res.*, Vol. 49 (23), pp. 12140–12147, 2010.
- [22] Mok Y.S., and Lee H.J., Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorptionreduction technique, *Fuel Process. Technol.*, Vol. 87 (7), pp. 591–597, 2006.
- [23] Yamasaki H., Mizuguchi H., Maeda K., Fujishima H., Kuroki T., Yamamoto H., and Okubo M., Performance evaluation of semi-dry flue gas desulfurization and denitration from flue gas of a glass melt using nonthermal plasma combined process, *Mech. Eng. J.*, Vol. 8 (2), 20–00519, 2021.
- [24] Yamamoto H., Kuroki T., Fujishima H., Yamamoto Y., and Yoshida K., Pilot-scale exhaust gas treatment for a glass manufacturing system using a plasma combined semi-dry chemical process, *IEEE Trans. Ind. Applicat.*, Vol. 53 (2), pp. 1416–1423, 2017.
- [25] Fukuda Y., Kuroki T., Nishioka R., Fujishima H., Yamasaki H., Yamamoto H., and Okubo M., Performance improvement in semi-dry ozone injection NO_x and SO_x removal process for a glass furnace flue gas, *Ozone Sci. Eng.* Vol. 44(5), pp. 453–463, 2022.
- [26] Atkinson R., Baulch D.L., Cox R.A., Crowley J.N., Hampson R.F., Hynes R.G., Jenkin M.E., Rossi M.J., and Troe J., Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I gas phase reactions of O_x, HO_x, NO_x and SO_x species, *Atm. Chem. Phys.*, Vol. 4 (6), pp. 1461–1738, 2004.
- [27] National Institute for Standards and Technology (NIST), Chemical kinetics database, https://kinetics.nist.gov/kinetics/Detail?id=1997DEM/SAN1-266:385, 6 October 2022.
- [28] Dentener F.J., and Crutzen P.J., Reaction of N₂O₅ on tropospheric aerosols impact on the global distributions of NO_x, O₃, and OH, J. Geophys. Res., Vol. 98 (D4), pp. 7149–7163, 1993.
- [29] Wang Z., Zhang X., Zhou Z., Chen W.Y., Zhou J., and Cen K., Effect of additive agents on the simultaneous absorption of NO₂ and SO₂ in the calcium sulfite slurry, *Energy Fuels*, Vol. 26 (9), pp. 5583–5589, 2012.
- [30] Liu S.Y., and Xiao W.D., Modeling and simulation of bubbling SO₂ absorber with granular limestone slurry and an organic acid additive, *Chem. Eng. Technol.*, Vol. 29 (10), pp. 1167–1173, 2006.
- [31] Santschi Ch., and Rossi M.J., Uptake of CO₂, SO₂, and HCl on calcite (CaCO₃) at 300 K: mechanism and the role of adsorbed water, J. Phys. Chem. A, Vol. 110 (21), pp. 6789–6802, 2006.
- [32] Tang N., Liu Y., Wang H., Xiao L., and Wu Z., Enhanced absorption process of NO₂ in CaSO₃ slurry by the addition of MgSO₄, *Chem. Eng. J.*, Vol. 160 (1), pp. 145–149, 2010.
- [33] Inoue J., Itagaki T., Tanaka T., Kuroki T., Yamasaki H., Yamamoto H., Hattori M., and Okubo M., Low concentration NO_x removal using plasma-chemical hybrid process combined with limestone-gypsum desulfurization, *Proc. of 17th Int. Conf. Electrostatic Precipitation*, Kyoto, 2024.
- [34] Ninomiya K., Imaura M., and Kono H., Absorption reactions of NO-NO₂ gas mixtures with ammonium sulfite solutions, *NIPPON KAGAKU KAISHI*, Vol. 1981(12), pp. 1846–1854, 1981. (in Japanese)